Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell Discov ; 7(1): 123, 2021 Dec 18.
Article in English | MEDLINE | ID: covidwho-1768807

ABSTRACT

A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is urgently needed to tackle the COVID-19 global pandemic. Here, we describe the development of chimpanzee adenovirus serotypes 6 and 68 (AdC6 and AdC68) vector-based vaccine candidates expressing the full-length transmembrane spike glycoprotein. We assessed the vaccine immunogenicity, protective efficacy, and immune cell profiles using single-cell RNA sequencing in mice. Mice were vaccinated via the intramuscular route with the two vaccine candidates using prime-only regimens or heterologous prime-boost regimens. Both chimpanzee adenovirus-based vaccines elicited strong and long-term antibody and T cell responses, balanced Th1/Th2 cell responses, robust germinal center responses, and provided effective protection against SARS-CoV-2 infection in mouse lungs. Strikingly, we found that heterologous prime-boost immunization induced higher titers of protective antibodies, and more spike-specific memory CD8+ T cells in mice. Potent neutralizing antibodies produced against the highly transmissible SARS-CoV-2 variants B.1.1.7 lineage (also known as N501Y.V1) and B.1.351 lineage (also known as N501Y.V2) were detectable in mouse sera over 6 months after prime immunization. Our results demonstrate that the heterologous prime-boost strategy with chimpanzee adenovirus-based vaccines is promising for further development to prevent SARS-CoV-2 infection.

2.
J Virol ; 96(4): e0157821, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1759290

ABSTRACT

The ongoing SARS-CoV-2 pandemic poses a severe global threat to public health, as do influenza viruses and other coronaviruses. Here, we present chimpanzee adenovirus 68 (AdC68)-based vaccines designed to universally target coronaviruses and influenza. Our design is centered on an immunogen generated by fusing the SARS-CoV-2 receptor-binding domain (RBD) to the conserved stalk of H7N9 hemagglutinin (HA). Remarkably, the constructed vaccine effectively induced both SARS-CoV-2-targeting antibodies and anti-influenza antibodies in mice, consequently affording protection from lethal SARS-CoV-2 and H7N9 challenges as well as effective H3N2 control. We propose our AdC68-vectored coronavirus-influenza vaccine as a universal approach toward curbing respiratory virus-causing pandemics. IMPORTANCE The COVID-19 pandemic exemplifies the severe public health threats of respiratory virus infection and influenza A viruses. The currently envisioned strategy for the prevention of respiratory virus-causing diseases requires the comprehensive administration of vaccines tailored for individual viruses. Here, we present an alternative strategy by designing chimpanzee adenovirus 68-based vaccines which target both the SARS-CoV-2 receptor-binding-domain and the conserved stalk of influenza hemagglutinin. When tested in mice, this strategy attained potent neutralizing antibodies against wild-type SARS-CoV-2 and its emerging variants, enabling an effective protection against lethal SARS-CoV-2 challenge. Notably, it also provided complete protection from lethal H7N9 challenge and efficient control of H3N2-induced morbidity. Our study opens a new avenue to universally curb respiratory virus infection by vaccination.


Subject(s)
COVID-19/prevention & control , ChAdOx1 nCoV-19 , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines , Orthomyxoviridae Infections/prevention & control , SARS-CoV-2/immunology , Animals , COVID-19/epidemiology , COVID-19/genetics , COVID-19/immunology , ChAdOx1 nCoV-19/genetics , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/pharmacology , Female , HEK293 Cells , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza Vaccines/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Transgenic , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Pandemics , SARS-CoV-2/genetics
3.
J Allergy Clin Immunol ; 149(4): 1225-1241, 2022 04.
Article in English | MEDLINE | ID: covidwho-1654641

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly pathogenic and contagious coronavirus that caused a global pandemic with 5.2 million fatalities to date. Questions concerning serologic features of long-term immunity, especially dominant epitopes mediating durable antibody responses after SARS-CoV-2 infection, remain to be elucidated. OBJECTIVE: We aimed to dissect the kinetics and longevity of immune responses in coronavirus disease 2019 (COVID-19) patients, as well as the epitopes responsible for sustained long-term humoral immunity against SARS-CoV-2. METHODS: We assessed SARS-CoV-2 immune dynamics up to 180 to 220 days after disease onset in 31 individuals who predominantly experienced moderate symptoms of COVID-19, then performed a proteome-wide profiling of dominant epitopes responsible for persistent humoral immune responses. RESULTS: Longitudinal analysis revealed sustained SARS-CoV-2 spike protein-specific antibodies and neutralizing antibodies in COVID-19 patients, along with activation of cytokine production at early stages after SARS-CoV-2 infection. Highly reactive epitopes that were capable of mediating long-term antibody responses were shown to be located at the spike and ORF1ab proteins. Key epitopes of the SARS-CoV-2 spike protein were mapped to the N-terminal domain of the S1 subunit and the S2 subunit, with varying degrees of sequence homology among endemic human coronaviruses and high sequence identity between the early SARS-CoV-2 (Wuhan-Hu-1) and current circulating variants. CONCLUSION: SARS-CoV-2 infection induces persistent humoral immunity in COVID-19-convalescent individuals by targeting dominant epitopes located at the spike and ORF1ab proteins that mediate long-term immune responses. Our findings provide a path to aid rational vaccine design and diagnostic development.


Subject(s)
COVID-19 , Antibodies, Viral , Epitopes , Humans , Immunity, Humoral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
Front Immunol ; 12: 697074, 2021.
Article in English | MEDLINE | ID: covidwho-1311376

ABSTRACT

The development of a safe and effective vaccine against SARS-CoV-2, the causative agent of pandemic coronavirus disease-2019 (COVID-19), is a global priority. Here, we aim to develop novel SARS-CoV-2 vaccines based on a derivative of less commonly used rare adenovirus serotype AdC68 vector. Three vaccine candidates were constructed expressing either the full-length spike (AdC68-19S) or receptor-binding domain (RBD) with two different signal sequences (AdC68-19RBD and AdC68-19RBDs). Single-dose intramuscular immunization induced robust and sustained binding and neutralizing antibody responses in BALB/c mice up to 40 weeks after immunization, with AdC68-19S being superior to AdC68-19RBD and AdC68-19RBDs. Importantly, immunization with AdC68-19S induced protective immunity against high-dose challenge with live SARS-CoV-2 in a golden Syrian hamster model of SARS-CoV-2 infection. Vaccinated animals demonstrated dramatic decreases in viral RNA copies and infectious virus in the lungs, as well as reduced lung pathology compared to the control animals. Similar protective effects were also found in rhesus macaques. Taken together, these results confirm that AdC68-19S can induce protective immune responses in experimental animals, meriting further development toward a human vaccine against SARS-CoV-2.


Subject(s)
Adenovirus Vaccines/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization Schedule , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Vaccination/methods , Adenovirus Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Cricetinae , Disease Models, Animal , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Pan troglodytes , RNA, Viral/blood , Spike Glycoprotein, Coronavirus/immunology , Transfection , Treatment Outcome
5.
Curr Opin HIV AIDS ; 15(6): 351-358, 2020 11.
Article in English | MEDLINE | ID: covidwho-793803

ABSTRACT

PURPOSE OF REVIEW: Coronavirus disease-19 (COVID-19) is a highly transmittable and pathogenic pneumonia-causing disease, which is caused by severe acute respiratory syndrome coronavirus-2, resulting in millions of deaths globally. Severe acute respiratory syndrome coronavirus-2 may coexist with human populations for a long time. Therefore, high-effective COVID-19 vaccines are an urgent need. RECENT FINDINGS: Vaccines help in the development of long-lasting humoral or cellular immunity, or both, by exposing individuals to antigens that induce an immunological response and memory prior to infections with live pathogens. New vaccine technologies, such as viral vectors and nucleic acid-based vaccines, which represent highly versatile technologies, may allow for faster vaccine manufacture and scale up production. SUMMARY: We summarized the recent progress made in relation to COVID-19 vaccine development using several promising technologies, with particular emphasis on advancements that are currently at the clinical trial stage.


Subject(s)
Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Adenoviridae/genetics , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Humans , Vaccination , Vaccines, Attenuated/immunology , Vaccines, DNA/immunology , Vaccines, Inactivated/immunology , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL